Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CryIAc toxin.

نویسندگان

  • M K Lee
  • T H You
  • B A Young
  • J A Cotrill
  • A P Valaitis
  • D H Dean
چکیده

We have evaluated the binding of Bacillus thuringiensis Cry toxins to aminopeptidase N (APN) purified from Lymantria dispar (gypsy moth) brush border membrane vesicle (BBMV). CryIAc toxin bound strongly to APN, while either the structurally related CryIAa and CryIAb toxins or CryIC, CryIIA, and CryIIIA toxins showed weak binding to APN. An in vitro competition binding study demonstrated that the binding of CryIAc to L. dispar BBMV was inhibited by APN. Inhibition of short circuit current for CryIAc, measured by voltage clamping of whole L. dispar midgut, was substantially reduced by addition of phosphatidylinositol-specific phospholipase C, which is known to release APN from the midgut membrane. In contrast, addition of phosphatidylinositol-specific phospholipase C had only a marginal effect on the inhibition of short circuit current for CryIAa. These data suggest that APN is the major functional receptor for CryIAc in L. dispar BBMV. A ligand blotting experiment demonstrated that CryIAc recognized a 120-kDa peptide (APN), while CryIAa and CryIAb recognized a 210-kDa molecule in L. dispar BBMV. In contrast, CryIAa and CryIAb bound to both the 120- and 210-kDa molecules in Manduca sexta BBMV, while CryIAc recognized only the 120-kDa peptide. The 120-kDa peptide (APN) in L. dispar BBMV reacted with soybean agglutinin, indicating that N-acetylgalactosamine is a component of this glycoprotein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bacillus thuringiensis Cry1Ac toxin-induced permeability change in Manduca sexta midgut brush border membrane vesicles proceeds by more than one mechanism.

Aminopeptidase N purified from whole Manduca sexta midgut binds the Cry1Ac insecticidal toxin from Bacillus thuringiensis and this binding is inhibited by N-acetylgalactosamine (GalNAc). We have examined the membrane permeabilising activity of the Cry1Ac toxin using brush border membrane vesicles (BBMV) prepared from the anterior (A-BBMV) and posterior (P-BBMV) subregions of the M. sexta midgut...

متن کامل

Bacillus thuringiensis pore-forming toxins trigger massive shedding of GPI-anchored aminopeptidase N from gypsy moth midgut epithelial cells.

The insecticidal Cry proteins produced by Bacillus thuringiensis strains are pore-forming toxins (PFTs) that bind to the midgut brush border membrane and cause extensive damage to the midgut epithelial cells of susceptible insect larvae. Force-feeding B. thuringiensis PFTs to Lymantria dispar larvae elicited rapid and massive shedding of a glycosylphosphatidylinositol (GPI)-anchored aminopeptid...

متن کامل

Partial purification and characterization of Bacillus thuringiensis Cry1A toxin receptor A from Heliothis virescens and cloning of the corresponding cDNA.

Although extensively studied, the mechanism of action of insecticidal Bacillus thuringiensis Cry toxins remains elusive and requires further elucidation. Toxin receptors in the brush border membrane demand particular attention as they presumably initiate the cascade of events leading to insect mortality after toxin activation. The 170-kDa Cry1Ac toxin-binding aminopeptidase from the tobacco bud...

متن کامل

The Bacillus thuringiensis insecticidal toxin binds biotin-containing proteins.

Brush border membrane vesicles from larvae of the tobacco hornworm, Manduca sexta, contain protein bands of 85 and 120 kDa which react directly with streptavidin conjugated to alkaline phosphatase. The binding could be prevented either by including 10 microM biotin in the reaction mixture or by prior incubation of the brush border membrane vesicles with an activated 60- to 65-kDa toxin from Bac...

متن کامل

SHORT COMMUNICATION INHIBITION OF POTASSIUM-GRADffiNT-DRIVEN PHENYLALANINE UPTAKE IN LARVAL LYMANTRIA DISPAR MIDGUT BY TWO BACILLUS THURINGIENSIS DELTA- ENDOTOXINS CORRELATES WITH THE ACTIVITY OF THE TOXINS AS GYPSY MOTH LARVICIDES

During speculation, Bacillus thuringiensis produces parasporal inclusions with insecticidal activity. The parasporal inclusions produced by most subspecies of B. thuringiensis are active only against the larvae of a few lepidopteran insects. Lepidopteran-active parasporal inclusions are usually bipyramidal crystals composed of one or more 130x lCP-l^Ox 10 Mr polypeptides. These polypeptides are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 62 8  شماره 

صفحات  -

تاریخ انتشار 1996